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Abstract

An integration method is discussed which has been designed to treat parabolic and hyperbolic terms explicitly and stiff
reaction terms implicitly. The method is a special two-step form of the one-step IMEX (implicit–explicit) RKC (Runge–
Kutta–Chebyshev) method. The special two-step form is introduced with the aim of getting a non-zero imaginary stability
boundary which is zero for the one-step method. Having a non-zero imaginary stability boundary allows, for example, the
integration of pure advection equations space-discretized with centered schemes, the integration of damped or viscous
wave equations, the integration of coupled sound and heat flow equations, etc. For our class of methods it also simplifies
the choice of temporal step sizes satisfying the von Neumann stability criterion, by embedding a thin long rectangle inside
the stability region. Embedding rectangles or other tractable domains with this purpose is an idea of Wesseling.
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1. Introduction

Time-dependent PDE problems of mixed type containing parabolic, hyperbolic and reaction terms typically
exhibit wide ranges of spatial and temporal scales, challenging the spatial discretization to avoid fine space
grids over the whole domain through adaptivity, and challenging the time integration to avoid an expensive
fully implicit treatment of the whole coupled semi-discrete system. For example, detailed chemistry in reactive
flows will mostly require an implicit treatment due to stiffness, but if the flow is advection dominated a fully
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implicit time integration (of all coupled problem terms) is often a great waste and problematical in higher
space dimension [9]. Following the method of lines approach, in this paper we focus on the efficient time inte-
gration of semi-discrete systems composed of coupled terms of mixed type.

We present a modification of the IMplicit–EXplicit (IMEX) Runge–Kutta–Chebyshev (RKC) method in
the form of a simple two-step method. Explicit RKC is a second-order, stabilized Runge–Kutta method
the stabilization of which is based on the classical three-term Chebyshev recursion. While explicit RKC
was originally designed for pure diffusion problems in [4], and for this purpose further discussed and devel-
oped in [12,14,13], we have recently modified it towards an IMEX form for incorporating highly stiff reaction
terms [15,11]. This form thus treats diffusion terms explicitly and reaction terms implicitly. Subsequently, by
adding more of a certain damping in the scheme, in [16] we have shown that treatment of advection terms is
also possible without giving up the essential stabilization properties for diffusion. The result in [16] is a method
which treats advection and diffusion terms explicitly and stiff reaction terms implicitly, which is attractive in
higher space dimension. This method also enables a high degree of parallelism which is important for truly
large scale flow problems.

The stability region of the explicit one-step method (and its IMEX counterpart) is stretched along the neg-
ative real axis. Near the origin its boundary comes close to the imaginary axis allowing the integration of
slightly dissipative problems. However, since there is no intersection with the imaginary axis, problems having
purely imaginary eigenvalues will impede very small temporal step sizes eventually resulting in instability. The
special two-step form proposed here has been chosen to overcome this and to provide a non-zero imaginary
stability boundary (see Fig. 1 for stability region plots). This allows for example the integration of pure advec-
tion equations discretized in space with centered schemes, but also problems of a different origin like damped
or viscous wave equations [3,8], coupled sound and heat flow problems [10], or the Maxwell equations coupled
with nonlinear heat equations [19]. An additional advantage is that it also simplifies the choice of temporal
step sizes satisfying the von Neumann stability criterion by embedding a thin and very long rectangle inside
Fig. 1. Stability regions with embedded rectangles. Left for s = 3,5,7,9. Right for s = 4,6,8,10.
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the stability region, as illustrated in Fig. 1. Embedding rectangles or other tractable domains with this purpose
is an idea of Wesseling [17,18].

In Section 2, we will briefly review the explicit one-step method and its IMEX form. The two-step form with
its stability regions is derived in Section 3. Section 4 is devoted to three example problems so as to illustrate the
applicability of stabilized integration. Here we treat a damped wave equation, a system for coupled sound and
heat flow, and a stiff advection–diffusion–reaction system. Section 5 concludes the paper with some final
remarks and some recent related literature.
2. The one-step method

Historically the principal goal when constructing Runge–Kutta methods was to achieve the highest-order
possible with a given number of stages s. Stabilized methods like RKC are different in that usually a low order
is chosen whereas additional stages are exploited to increase the region of absolute stability. Originally the
RKC method was intended for semi-discrete parabolic PDE problems. Correspondingly, the original method
is stable on a strip containing a long segment of the negative real axis. The wider the strip, the greater the
applicability of the method, but the most important characteristic of the formula is the length of the segment,
the real stability boundary, which increases quadratically with s. For ODE initial value problems w 0 = F(t,w)
the explicit one-step method reads
W 0 ¼ wn;

W 1 ¼ W 0 þ ~l1sF 0;

W j ¼ ð1� lj � mjÞW 0 þ ljW j�1 þ mjW j�2 þ ~ljsF j�1 þ ~cjsF 0; j ¼ 2; . . . ; s;

wnþ1 ¼ W s;

ð2:1Þ
where wn, wn+1 denote the sought approximations at times tn, tn+1 and s = tn+1 � tn is the step size which may
vary in time. Although this formula is not in the canonical Runge–Kutta form, it belongs to the class of s-stage
explicit Runge–Kutta methods. The Wj are internal vectors approximating w(tn + cjs) and Fj denotes
F(tn + cjs,Wj) with 0 6 cj 6 1. Note the recursive form of the Wj by which only five arrays of storage are
needed independent of the value for s. All coefficients are available in analytical form for arbitrary s P 2,
see [13,15] and earlier references and [12] for a Fortran 77 code.

When applied to the scalar stability test equation w0 ¼ kw; k 2 C (having Fourier–von Neumann analysis in
mind), the second-order consistent stability function
P sðzÞ ¼ 1� bsT sðx0Þ þ bsT sðx0 þ x1zÞ ð2:2Þ
is obtained, where Ts is the first kind Chebyshev polynomial of degree s and
x0 ¼ 1þ e=s2; x1 ¼ T 0sðx0Þ=T 00s ðx0Þ; bs ¼ T 00s ðx0Þ=ðT 0sðx0ÞÞ2: ð2:3Þ

The parameter e P 0 is still free and is available for damping. If e > 0, 0 < Ps(z) < 1 in the interior of the real
stability interval [�b(s), 0]. With e � 0 we have b(s) � 0.66(s2 � 1). This choice is appropriate for pure diffusion
problems. For advection–diffusion problems e should be chosen larger to get wider stability regions and, at the
origin, their boundaries closer to the imaginary axis. In [16] the value e = 10 has been used. Then upwind dis-
cretizations yield appropriate CFL numbers at the expense of a reduction in b(s) to � 0.34(s2 � 1). Note that
for s = 2 method (2.1) reduces to the explicit trapezoidal rule which for the third-order upwind-biased advec-
tion scheme results in a critical CFL number of 0.87 [5]. For increasing s this critical CFL number monoton-
ically increases to 1.7. However, for all e P 0 the intersection of the stability region with the imaginary axis is
zero.

The IMEX counterpart of (2.1) is defined for ODE systems [15,16],
w0 ¼ F ðt;wÞ; F ðt;wÞ ¼ F Eðt;wÞ þ F Iðt;wÞ ð2:4Þ

with FE, FI representing terms that will be treated Explicitly and Implicitly:
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W 0 ¼ wn;

W 1 ¼ W 0 þ ~l1sF E;0 þ ~l1sF I;1;

W j ¼ ð1� lj � mjÞW 0 þ ljW j�1 þ mjW j�2 þ ~ljsF E;j�1 þ ~cjsF E;0 þ ½~cj � ð1� lj � mjÞ~l1�sF I;0

� mj~l1sF I;j�2 þ ~l1sF I;j; j ¼ 2; . . . ; s;

wnþ1 ¼ W s:

ð2:5Þ
Here FE,j = FE(tn + cjs,Wj) and FI,j = FI(tn + cjs,Wj). For zero FI the scheme is identical to (2.1). One can see
that for non-zero FI this term is treated implicitly in a backward Euler way at any jth stage, using the same
coefficient ~l1. Of importance is that the stationary state equation FE(t,w) + FI(t,w) = 0 is respected [15] and
that we do not split FE and FI as in time (operator) splitting. If the implicit term does not involve coupling over
the space grid, the implicit computation becomes relatively cheap (certainly with parallelization).

When applied to the scalar stability test equation w 0 = kEw + kIw, we get the counterpart of (2.2),
RsðzE; zIÞ ¼ 1� bsT sðx0Þ þ bsT s
x0 þ x1zE

1� x1

x0
zI

 !
; ð2:6Þ
where zE = skE, zI = skI. From this expression, linear stability (in the sense of Fourier–von Neumann) can be
concluded for all (zE,zI) such that zI 6 0 and zE belongs to a convex region inside the stability region of Ps(z)
(e.g. ellipses or ovals as in [16]). Hence the IMEX form provides unconditional stability for real negative im-
plicit eigenvalues, such as real negative reaction eigenvalues, and maintains the stability for explicit eigen-
values, such as transport eigenvalues in an advection–diffusion context. The order of consistency of (2.5)
formally drops down to one, but with a very small error coefficient for the implicitly treated part if s gets large.
See [15] for further details.

3. The two-step method

Suppose wn�1, wn have been computed by the two-step method at times tn�1, tn = tn�1 + sn�1. Using the
variable step size sn = tn+1 � tn, the two-step method then defines the approximation wn+1 at the forward time
level tn+1 by
wnþ1 ¼ a�1wn�1 þ a0wn þ ag ~wnþg; ð3:1Þ

where ~wnþg is the result of the one-step method (2.1) or (2.5) taken from wn with a step size gsn. Hence we first
apply the one-step method at t = tn as above, but with a step size gsn, and then form the new forward two-step
result wn+1 by means of (3.1). The cost of a step with the new method is almost the same as the cost of a step
with the one-step method, but additional flexibility is obtained by means of g and the coefficients of the linear
combination. Implementing this two-step method is trivial if the one-step method has been coded, see [12] for
a Fortran 77 code of (2.1) and [11] for a Fortran 90 code of (2.5). To obtain the extra starting value, the first
step can be done with the one-step method.

3.1. Consistency conditions

The new coefficients a�1, a0, ag, g will be first restricted to give second-order consistency for nonlinear sys-
tems w 0 = F(t,w) assuming that ~wnþg has been obtained with the second-order explicit method (2.1). For this
purpose we can take F(t,w) = Aw with A constant, for which the one-step method for s P 3 satisfies the
expansion
~wnþg ¼ wþ gsnw0 þ 1

2
g2s2

nw00 þ 1

6
cg3s3

nw000 þ Oðs4
nÞ; c 6¼ 0;
where w = w(tn). The constant c is found by expanding Ps(z) given in (2.2) at z = 0,
P sðzÞ ¼ 1þ zþ 1

2
z2 þ 1

6
cz3 þ � � � ; c ¼ T 0sðx0ÞT 000s ðx0Þ

T 00s ðx0Þ2
:



B.P. Sommeijer, J.G. Verwer / Journal of Computational Physics 224 (2007) 3–16 7
Denoting with rn = sn/sn�1 the step size ratio, we then find for second-order consistency for general nonlinear
systems the conditions
Table
Values

s

e
SRe(s)/
a0 ¼ 1� a�1 � ag; ag ¼
1þ rn

gð1þ grnÞ
; a�1 ¼

r2
nð1� gÞ
1þ grn

; ð3:2Þ
where g is still free. It is possible to impose third-order consistency for the linear problem w 0 = Aw by defining
g through (crn)g2 + (1 � rn)g � 1 = 0. There are always two real roots for g, one negative and one positive. We
need of course the positive root. For example, for constant step sizes we then have g ¼ 1=

ffiffiffi
c
p

.
It should be noted that always 1 < g < 2. For problems not defined beyond an output time t = T, having

g > 1 implies that the final integration step should be carried out by means of the one-step formula, similar
as the initial step. Also observe that s P 3 is required since the requirement c 6¼ 0 implies s P 3 for (2.1).

For the IMEX method (2.5) the order again drops down to one, but with a very small error constant for the
implicitly treated part for s large. Observe that all coefficients depend on c, hence on x0, hence on s and e
through (2.3). This dependence is weak and decreases rapidly with s and in all cases moderate values are
found. For example, for s = 3 we have c ¼ ð4x2

0 � 1Þ=8x2
0 ¼ 1=2� 1=ð8ð1þ e=9Þ2Þ, revealing a weak depen-

dence on e.

3.2. Stability regions

Our aim is to provide (3.1) with a non-zero imaginary stability boundary. For that purpose we consider
linear stability for constant step sizes and assume the explicit method (2.1) for providing ~wnþg. We also choose
g ¼ 1=

ffiffiffi
c
p

giving third-order consistency for linear problems.
Consider the corresponding characteristic equation
f2 � ða0 þ agP sðgzÞÞf� a�1 ¼ 0; ð3:3Þ

and let bRe(s) and bIm(s) denote the real and imaginary stability boundary. Imposing the root condition [5]
defines the stability region, bRe(s) and bIm(s), and assures zero-stability (for z = 0). The stability regions are
constructed numerically from the root condition. Herewith the damping parameter e can be used to adjust
the shape of the regions. Taking e� 1 will reduce bRe(s) considerably. On the other hand, the dependence
of bIm(s) on e turns out to be minor. In connection with bIm(s) the case s = 3 appears to be special. We have
bImð3Þ ¼

ffiffiffi
3
p

for all e P 0 which also happens to be the imaginary stability boundary of any one-step three-
stage, third-order explicit Runge–Kutta method. The independence of bIm(3) on e is due to the fact that pre-
cisely at z ¼ �i

ffiffiffi
3
p

the modulus of the largest root of (3.3) is independent of e and equal to 1. For increasing s

the boundary bIm(s) does slightly increase, and somewhat stronger for larger e. Stability regions are illustrated
in Fig. 1. Their defining e-values are found in Table 1.

If we do not require consistency of order three for linear problems, we can use the coefficient g to maximize
bIm(s). A numerical search has shown that for s = 3 the imaginary boundary can be increased to 2.0 with a
similar increase for s > 3. This however comes at the expense of significantly smaller real stability boundaries
so that we prefer to use the coefficients giving third-order consistency for linear problems.

3.3. Embedded thin rectangles

To facilitate the selection of s according to Fourier–von Neumann stability (for example for the most com-
mon advection–diffusion discretizations), we will now embed rectangles
1
for e and SRe(s) rounded to two decimal places for the rectangles from Fig. 1

3 4 5 6 7 8 9 10 >10

1 4 2 1.5 1.5 1.0 0.9 0.9 0.9
s2 0.14 0.37 0.34 0.43 0.40 0.45 0.44 0.45 0.45
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RðsÞ ¼ fz 2 C : z ¼ xþ iy; �SReðsÞ 6 x 6 0; jyj 6 SImðsÞg ð3:4Þ

within the stability regions, such that SRe(s) � bRe(s) and SIm(s) � bIm(s). These rectangles are then used for
the step size selection, an idea proposed in Wesseling [17], see also [18, Section 5.7] and [16] where other
embedded domains are considered.

We choose
ffiffiffi
3
p

for SIm(s) for all s P 3, and adjust e to get SRe(s) as large as possible. This approach is con-
venient. Because given a semi-discrete PDE problem with purely imaginary eigenvalues, or eigenvalues close to
the imaginary axis, we then can determine s from the condition that the imaginary part of any occurring
z-value will lie in a rectangle and hence in a stability region. Having dealt with the imaginary parts and thus
have a selected s at hand, we subsequently can choose the smallest value for s such that the real part of any
occurring z-value will lie in the rectangle. At this point we thus exploit the stabilization for diffusion terms by
which we can avoid a diffusion step size restriction. After some trial and error computations, we have con-
cluded that this embedded rectangle approach works best for small s if e is relatively large, which is, e.g.
advantageous for pure advection problems. On the other hand, for large s smaller e-values can be taken which
is advantageous for pure diffusion problems.

The results are given in Fig. 1 and Table 1. The figure shows embedded rectangles for s = 3, . . . ,10, while
the table gives the corresponding values for e and SRe(s). Observe that the most right column in the table
applies to arbitrary s > 10 and recall that SImðsÞ ¼

ffiffiffi
3
p

for all s P 3. Due to symmetry we have SRe(s) = bRe(s)
for s even while for s large bRe(s) � 0.45s2. This result is quite satisfactory in view of the fact that the optimal
real stability boundary for third-order stabilized polynomials (for one-step methods) is close to 0.49s2, see Sec-
tion V.1.1 in [5]. Note that for s = 3 the optimal value for e for embedding the rectangle is infinity. This results
in a special formula for the one-step method (formula (3.3) in [16]).

Finally assume that the IMEX method (2.5) is used to obtain the one-step result ~wnþg. In the characteristic
Eq. (3.3) we then have to replace Ps(gz) by Rs(gzE,gzI) defined in (2.6). By rewriting Rs(gzE,gzI) to
P sðg~zÞ ¼ 1� bsT sðx0Þ þ bsT sðx0 þ x1g~zÞ; ~z ¼ zE þ zI

1� x1

x0
gzI

; ð3:5Þ
it follows that for stability we can again consider (3.3) with z replaced by ~z. It thus can be shown that if zE lies
in a rectangle, ~z also lies in this rectangle for any zI 6 0, assuring linear stability.

3.4. Fourier–von Neumann stability for advection–diffusion

Using the embedded rectangle approach we can easily give Fourier–von Neumann stability restrictions on s
and s for standard advection–diffusion discretizations of the test model
ut þ
X

k

akuxk ¼
X

k

dkuxk xk þ ru: ð3:6Þ
The reaction term ru has been added to emphasize that all results are valid for the IMEX two-step scheme for
any real non-positive reaction eigenvalue r. Because the IMEX scheme is unconditionally stable for these
eigenvalues, r will not appear in the stability restrictions.

Let us suppose spatial discretization on a direction-wise uniform Cartesian grid with grid sizes hk by means
of the following schemes [5]: for advection 1st-order upwind, 2nd-order central, 3rd-order upwind-biased, 4th-
order central, and for diffusion 2nd-order central and 4th-order central. Denote
A ¼
X

k

jakj
hk

; D ¼
X

k

dk

h2
k

:

The step size restriction on the imaginary parts of the eigenvalues emerging from Fourier–von Neumann anal-
ysis then becomes the CFL condition
s 6

ffiffiffi
3
p

=A : 1st- and 2nd-order advection discretization
5
7

ffiffiffi
3
p

=A : 3rd- and 4th-order advection discretization

(
ð3:7Þ
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The condition on the number of stages s, guaranteeing that the real parts of all emerging eigenvalues lie within
the rectangle, is sr 6 SR(s) = cRe(s)s2 where r is the in modulus largest real part and cRe(s) the constant given
in Table 1. For the 2nd-order diffusion discretization the r-values are
r ¼
2Aþ 4D : 1st-order advection discretization

4A=3þ 4D : 3rd-order advection discretization

4D : 2nd and 4th-order advection discretization

8><
>: ð3:8Þ
while for the 4th-order diffusion discretization the term 4D is to be replaced by 16D/3.
We thus should take the smallest number of stages s satisfying s2 P sr/cRe(s). If D = 0 (pure advection) the

smallest value is of course s = 3. If A = 0 (pure diffusion) we have no step size restriction. In all other cases
with Table 1 at hand and s and r given, searching a minimal value for s is a trivial task because cRe(s) is con-
stant for s P 10.
4. Numerical examples

4.1. A damped wave equation

As a first test problem we consider the scalar damped wave equation (see [3,8])
cut þ utt ¼ r � ðDruþ QrutÞ þ S; ð4:1Þ

where c P 0, D and Q are symmetric nonnegative diffusion tensors and S is a source, all possibly dependent on
space, time and u. This equation represents an interesting class of problems containing the classic two-way
wave equation having a purely imaginary spectrum and strongly damped equations having a real negative
spectrum. It thus is of clear interest for a numerical study of the two-step explicit RKC method. Here we con-
fine ourselves to the 2D problem
cut þ utt ¼ ðd1ux þ q1utxÞx þ ðd2uy þ q2utyÞy þ S; ð4:2Þ
defined on the unit square, with given initial conditions for u and ut at t = 0, and zero-flux boundary condi-
tions for t P 0. We emphasize that the restriction to 2D is not essential and merely made for the convenience
of obtaining and presenting numerical illustrations. The explicit nature of the integrator does allow treatment
of 3D problems extended with the z-direction in the same manner as we will use the 2D problem here. For
numerical integration we write (4.2) as
ut ¼ v;

vt ¼ �cvþ ðd1ux þ q1vxÞx þ ðd2uy þ q2vyÞy þ S;
ð4:3Þ
and for spatial discretization we use second-order central differences on a uniform cell-centered N · N grid of
width h = 1/N. This grid is convenient to implement zero fluxes at boundaries.

Assuming constant coefficients and periodicity, with this grid and this spatial discretization, Fourier–von
Neumann time-stepping stability requires z± = sk± to lie inside the stability region, where s is the step size,
k� ¼ �
1

2
ðaq þ cÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aq þ c
� �2 � 4ad

q
;

ad ¼
4d1

h2
sin2 n1ð Þ þ

4d2

h2
sin2 n2ð Þ; 0 6 n1; n2 6 p;

ð4:4Þ
and aq is defined in the same way as ad (q1, q2 instead of d1, d2). If c = q1 = q2 = 0 (no damping) all eigenvalues
are purely imaginary with a maximum modulus of 2h�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 þ d2

p
. In this undamped case two-step RKC can be

used with s = 3 and the imaginary stability boundary bIm ¼
ffiffiffi
3
p

then results in the time step restriction
s 6
h
ffiffiffi
3
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ d
p ; ð4:5Þ
1 2
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which is also used for s > 3. With damping, all eigenvalues do have a negative real part which is largest for k�
which in turn is bounded from below by �(aq + c). Using this safe bound and the given restriction on the step
size s, the minimal required number of stages s is then easily derived from Table 1 through
s
4

h2
ðq1 þ q2Þ þ c

� �
6 cReðsÞs2: ð4:6Þ
If both (4.5) and (4.6) are satisfied all values z± lie inside the stability rectangle of the method guaranteeing
Fourier–von Neumann stability. Of course, for the damped case it might pay to compute the maximal imag-
inary and negative real parts more accurately so as to integrate with a larger s and/or a smaller number of
stages s.

Example. Using a constant step size s, integrations have been carried out with the explicit two-step method for
a zero initial function for u and ut, constant problem coefficients c = 0, d1 = 0.01, d2 = 1, spatially dependent
coefficients q1 = q2 = q and a spatially dependent source function S:
qðx; yÞ ¼ 0:1e�100ððx�0:25Þ2þðy�0:25Þ2Þ;

Sðx; yÞ ¼ 100e�500ððx�0:75Þ2þðy�1Þ2Þ þ 100e�500ððx�0:25Þ2þðy�1Þ2Þ:
ð4:7Þ
The localization of S implies that two waves are excited, one at the boundary point ðx; yÞ ¼ ð3
4
; 1Þ and one at

ð1
4
; 1Þ. By the choice of d1, d2 both waves travel to the opposite y = 0 boundary, the first undamped and the

second damped near the location ð1
4
; 1

4
Þ of the damping function q. Wave profiles nicely revealing the smooth-

ing effect of the damping are shown in Fig. 2. We remark that the chosen function and coefficient values ad-
dress no specific physical situation; they merely serve to illustrate the numerics.

Because the peaked damping function q given in (4.7) is very close to zero in part of the domain, with this
setup we encounter, after linearization, eigenvalues k± very close to the imaginary axis as well as eigenvalues
with a large negative real part which gives a type of spectrum the explicit two-step method can deal with, as
opposed to the one-step method which will become unstable. The semi-discretization has been carried out on
coarse and fine grids, using N = 50(·2)400. Because the semi-discrete system w 0 = F(t,w) is linear with
constant coefficients in time, the two-step method integrates with third-order consistency. Hence we expect
that the spatial errors dominate, being of second-order. The step size s was defined by (4.5) giving s � 0.86/N.
With this s at hand, the minimal number of required stages s was determined from (4.6) using the maximal
value of the damping function q. This gives the inequality s2 P 0.69N/cRe(s).

The resulting values of s and s are given in Table 2. Note that the stage number s increases with
ffiffiffiffi
N
p

due to
the fact that s is proportional to 1/N. Table 2 also gives maximum values for the u-approximation taken over
the grids at the end time t = 1.5, so as to provide an accuracy measure. The results are very satisfactory. Two-
step RKC solves this problem routinely and accurately and given that the computation is explicit, even on fine
grids the used step sizes s and numbers of stages s are quite acceptable.

Finally, if we replaced the peaked damping function q by one which stays away from zero, the eigenvalues
k± given by (4.4) would have a strictly negative real part. In such situations also the one-step method could be
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Fig. 2. Damped wave equation: wave profiles computed on the 100 · 100 grid for t = 0.75 (left) and t = 1.5 (right).



Table 2
Damped wave equation: step sizes s, numbers of stages s and maxima for u

s s umax at t = 1.5

N = 50 0.0172 9 2.79447
N = 100 0.0086 13 2.77026
N = 200 0.0043 18 2.77600
N = 400 0.0022 25 2.77743
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considered. For example, for q1 = q2 = 0.1, the one-step method is stable when using the step sizes and stage
numbers of Table 2.
4.2. Coupled sound and heat flow

As a second example we consider the scaled linearized equations for coupled sound and heat flow. Express-
ing conservation of mass, momentum and energy, these equations read (see e.g. [10], Section 10.4)
vt ¼ cr � u; ut ¼ crv� cðc� 1Þre; et ¼ dDe� cr � u: ð4:8Þ

The solution variables v, u and e represent, respectively, specific volume, material velocity and specific internal
energy; c is the isothermal sound speed, c > 1 the ratio of specific heat, and d P 0 the thermal conductivity
coefficient. We consider this system in 2D on the unit square assuming periodicity for boundary conditions.
For spatial discretization the fourth-order central scheme on a uniform grid of width h will be used and time
integration will be done with two-step RKC.

In Fourier space the 2D PDE system (4.8) gives the 4-component ODE system
d

dt

n

g1

g2

f

0
BBB@

1
CCCA ¼

0 ca1 ca2 0

ca1 0 0 cð1� cÞa1

ca2 0 0 cð1� cÞa2

0 �ca1 �ca2 dðd1 þ d2Þ

0
BBB@

1
CCCA

n

g1

g2

f

0
BBB@

1
CCCA;
where n corresponds to v, g1 and g2 to the two velocity components in x and y direction, and f to the energy
component e. The coefficients a1, a2 and d1, d2 are eigenvalues of the spatial operators for, respectively, o/ox

and o/oy and o2/ox2 and o2/oy2. For example, for the fourth-order central scheme, a1 ¼
i

3h sinðx1Þð4� cosðx1ÞÞ with 0 6 x1 6 2p, giving a maximum modulus bounded by 7
5
h�1. Likewise, d1 is real,

non-positive with a maximum modulus of 16
3

h�2, being given by d1 ¼ � 1
3h2 ð7� 8 cosðx1Þþ cos2ðx1ÞÞ. The 4-

dimensional system defines the eigenvalues k and the values z = sk from which we can derive step size restric-
tions through the stability rectangles of two-step RKC. Unfortunately, the resulting cubic characteristic equa-
tion (we have one zero eigenvalue) is not feasible for elaboration. We therefore proceed with the two much
more simple separate cases c = 0 (diffusion only) and d = 0 (zero diffusion).

First let d = 0. Then the characteristic equation reads kðk2 � cc2ða2
1 þ a2

2ÞÞ ¼ 0. Using the maximum mod-

ulus of a1, a2 and the imaginary stability boundary bIm P
ffiffiffi
3
p

of two-step RKC, we get the step size restriction
(see (3.7))
s 6
5
ffiffiffi
3
p

7
ffiffiffi
2
p 1

c
ffiffiffi
c
p h: ð4:9Þ
The number of stages s for two-step RKC can now be set to 3 and the Fourier–von Neumann stability analysis
rigorously applies. Next assume zero sound speed, having just the heat equation. We then immediately arrive
at a restriction similar to (4.6), that is,
s 6
3 h2

cReðsÞs2: ð4:10Þ

32 d
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As common for a stabilized method for the heat equation, we then have the freedom to first make an appro-
priate choice for s and subsequently we can adjust the number of stages s using Tables 1 and (4.10). Again
Fourier–von Neumann stability analysis rigorously applies.

In the mixed case d > 0 and c > 0, we apply Fourier–von Neumann analysis heuristically. That is, we first
impose (4.9) prescribing s. Subsequently, s is chosen by means of (4.10) and Table 1. In the numerical tests
described below this heuristic strategy has resulted in stable computations.

Example. As time interval we have chosen 0 6 t 6 1, as initial velocities in x and y direction the periodic
functions u1 ¼ 2

5 p sin2ðpxÞ sinð2pyÞ and u2 ¼ � 1
5 p sin2ðpyÞ sinð2pxÞ, and a zero initial field for v and e. The

problem coefficients are given by c = 1, c = 3 and for d we have chosen the peaked function d = 0.1
sin10(px)sin10(py). With this setup we encounter, after linearization, eigenvalues k± very close to the imaginary
axis since d is close to zero on part of the domain. This gives, after freezing coefficients, a type of spectrum the
explicit two-step method can deal with, as opposed to the one-step method which will become unstable.
Similar as for the damped wave equation, the choices made are not physically based; they only serve to
illustrate the numerics.

Using the above strategy for selecting the step size s (taken constant) and number of stages s, the coupled
sound and heat flow problem was then solved on coarse and fine grids using N = 50(·2)400. Fig. 3 shows plots
of approximations to u2 and e computed at the 100 · 100 grid at the end time t = 1. The used values of s and s

are given in Table 3. Note that like for the damped wave equation, the stage number s increases with
ffiffiffiffi
N
p

due
to the fact that s is proportional to 1/N. Table 3 also gives maximum values for the approximation to e taken
over the grids at the end time t = 1, so as to provide an accuracy measure. Again the results are very
satisfactory. Explicit two-step RKC also solves this problem routinely and accurately. Because we use here a
fourth-order spatial discretization, the order three of two-step RKC will prevail for decreasing s and h (the
semi-discrete problem is linear and has constant coefficients). Finally, if we had a strictly positive thermal
conductivity coefficient, say d = 0.1, rather than the chosen peaked function, the one-step method would also
be stable for the current problem.
4.3. An advection–diffusion–reaction problem

Our third test example is given by the 2D advection–diffusion–reaction problem (see also [16] where the
same problem has been studied in 3D)
Fi
ut þ a1ux þ a2uy ¼ dDuþ fðuÞ; ð4:11Þ

defined on the unit square in space and on the unit interval in time. Here u = (u1,u2)T, and the diffusion con-
stant d as well as the scalar velocities a1,a2 are given. The components of the nonlinear reaction term f(u) are
defined by
f1ðuÞ ¼ �k2u1u2 þ k1u2
2; f 2ðuÞ ¼ k2u1u2 � k1u2

2;
g. 3. Coupled sound and heat flow example: fields computed at the 100 · 100 grid at time t = 1. At the left u2, at the right e.



Table 3
Coupled sound and heat flow example: step sizes s, numbers of stages s and maxima for e

s s emax at t = 1.0

N = 50 0.0101 8 0.038500
N = 100 0.0051 11 0.038624
N = 200 0.0025 16 0.038671
N = 400 0.0013 22 0.038673
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where the reaction rates k1, k2 are positive constants. In this example, these constants will be given a large
value causing the reactions to be stiff. As a consequence of the stiffness we will employ the IMEX version
(2.5) of the RKC method.

Before continuing with the description of the advection–diffusion part in (4.11) we will first discuss the influ-
ence of the reactions on the solution. The equation ut = f(u) is exactly solved by
Fig. 4.
left for
u1ðtÞ ¼
s0

k1 þ k2

k1ð1� aÞ þ ðk1 þ k2Þae�s0k2t

1� aþ ae�s0k2t
; u2ðtÞ ¼ s0 � u1ðtÞ; ð4:12Þ
where a = ((k1 + k2)u1(0) � s0k1)/s0k2 and s0 denotes the sum of both components which is constant in time
(observe that f1(u) = �f2(u)). Setting u1(0) = 0 and u2(0) = s0 and choosing k1 = k2 = k� 1 we see that we
have a transient phase in which both u1(t) and u2(t) rapidly converge from their initial value to s0/2. In the
numerical experiments we set k = 106. Combining these observations for the reaction part with the full model
(4.11), we see that after the transient phase, both components are almost equal and will be advected along the
characteristics of the advection operator and spatially diffused. The divergence-free velocity field is defined by
a1ðx; yÞ ¼ � sin2ðpxÞ sinð2pyÞ; a2ðx; yÞ ¼ þ sin2ðpyÞ sinð2pxÞ: ð4:13Þ

For the diffusion constant we take d = 10�2 and the initial values at t = 0 are given by
u1ðx; y; 0Þ ¼ 0; u2ðx; y; 0Þ ¼ e�80 ðx�0:5Þ2þðy�4þ
ffiffi
2
p

8 Þ
2

� �
: ð4:14Þ
These expressions will also be used to prescribe the Dirichlet boundary values for t > 0. An accurate approx-
imation at t = 0.5 and t = 1 is shown in Fig. 4.

4.3.1. Two-step results

For the spatial discretization we use a uniform grid in both directions with mesh width h = 1/(N + 1),
resulting in N2 grid points. The advection operators as well as the Laplace operator are approximated by sec-
ond-order symmetric differences. Because of the rapid variation of the solution in the initial part of the inte-
gration interval (caused by the stiff reaction terms), this problem will be integrated with variable step sizes. To
that end, our starting point is the IMEX code IRKC from [11]. This fully automatic solver, designed for dif-
fusion-reaction problems, needs only minor amendment: we have incorporated the two-step extension, slightly
changed the local error estimator, and adapted the strategy for selecting the number of stages s, according to
Advection–diffusion–reaction equation: a time accurate 200 · 200 grid solution component u2 plotted on the 50 · 50 grid. At the
t = 0.5 and at the right for t = 1.
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Table 1. Furthermore, the time step is not only determined by the local error control as in IRKC but also has
to obey the CFL condition (3.7). As upper limit for s we use

ffiffiffi
3
p

=A with A = 2h�1 (cf. (4.13)).
We have integrated the above problem discretized on three spatial grids of increasing resolution, i.e. h =

1/100, 1/200, and 1/400. For TOL-values 10�2 and 10�4 the integration results are given in Table 4. As is com-
mon in ODE software, TOL is a user-specified quantity to monitor (an estimate of) the local truncation error.

From this table we can draw several conclusions. It turns out that in the initial, transient phase the step
sizes are determined by the local error control. Once the reaction terms are in steady state, the CFL condition
is more restrictive and overrules a possibly larger step size suggested by the error control. As a result, the
remaining part of the integration interval is integrated with a fixed stepsize. For the various spatial grids, these
CFL-based step sizes are given by 0.0086, 0.0043, 0.0022, respectively. Or, equivalently, would have resulted in
115, 231, 462 integration steps if all steps were chosen according to the CFL restriction. The actual number of
steps taken by the solver are larger, which is caused by the requested accuracy. For both tolerance-values, this
is only relevant during the transient phase. As a result of this step size selection mechanism, the global error is
mainly determined by the CFL-restricted step sizes. This explains why both TOL-values in Table 4 show
approximately equal global errors if the same spatial grid is used.

The errors listed in this table are time integration errors only. That is, on each spatial grid we first deter-
mined an accurate ODE solution (using TOL = 10�8) with which the numerical solutions obtained with the
above two TOL-values are compared. Given the fact that the solution at t = 1 is relatively small, we decided
to use the relative error, measured in the maximum norm (the errors listed in Table 4 correspond to the second
component u2; the errors for u1 are almost the same). Consistent with the first conclusion we observe a smaller
error on finer meshes, simply because a smaller step size was prescribed for stability reasons. After the tran-
sient phase, the solution is mainly determined by the linear advection–diffusion terms. This is reflected in the
observed order of convergence which is close to three.

The number of FE-evaluations equals the number of stages summed over all steps (accepted + rejected
ones). The number of FI-evaluations has been averaged over the number of spatial grid points. Hence, the
quotient of FI-evaluations/FE-evaluations resembles the (average) number of Newton iterations that we need
to solve the implicit relations. This number is seen to be in the interval (2.1, 2.4), which is a realistic value given
the nonlinearity of the problem.

4.3.2. Two-step on-the-fly results

It is interesting to further examine the influence of the CFL-condition on the performance of the code. To
that end, we repeated the above experiments on-the-fly. By this we mean that the instability protection for the
advection terms through the CFL condition has been removed and we let the step size be determined solely on
the basis of the local error control. However, the stability for the diffusion terms is still controlled by adjusting
the number of stages s as described in Section 3.4. For TOL = 10�2 the on-the-fly integrations failed on all
three spatial grids. Apparently, the local error control was unable to prevent instability. For TOL = 10�4,
however, the integrations were successful; the results are given in Table 5. We see that the number of steps
(and consequently the global errors) are almost independent of the spatial grid. The increasing stiffness when
refining the grids is only reflected in a larger number of stages. Comparing both versions of the solver, we con-
clude that for TOL = 10�4 the efficiencies are comparable. Still, due to its more robust behavior for a crude
tolerance, the CFL-protected version is to be preferred.
Table 4
Advection–diffusion–reaction problem solved by the two-step code where the time step is prescribed by the local error control and by the
CFL condition: results at t = 1 for h ¼ 1

100
= 1

200
= 1

400

Quantity TOL = 10�2 TOL = 10�4

Successful steps 146/245/476 225/326/556
Rejected steps 22/9/10 5/5/5
Evaluations of FE 851/1695/4237 1136/2010/4547
Evaluations of FI 1857/3643/8959 2732/4729/10208
Maximum s-value used 5/6/8 5/6/8
Relative error (max-norm) 1:510�4=1:910�5=2:210�6 1:310�4=2:010�5=2:210�6



Table 5
Advection–diffusion–reaction problem solved with the on-the-fly version of the two-step code: results at t = 1 for h ¼ 1

100
= 1

200
= 1

400

Quantity TOL = 10�2 TOL = 10�4

Successful steps Unstable (all grids) 198/197/196
Rejected steps 5/7/7
Evaluations of FE 1014/1414/2244
Evaluations of FI 2435/3334/5127
Maximum s-value used 7/12/25
Relative error (max-norm) 4:710�4=4:410�4=4:310�4

Table 6
Advection–diffusion–reaction problem solved with the one-step code from [11]: results at t = 1 for h ¼ 1

100
= 1

200
= 1

400

Quantity TOL = 10�2 TOL = 10�4

Successful steps 23/23/24 203/203/202
Rejected steps 11/11/15 6/6/7
Evaluations of FE 261/417/864 835/1184/1888
Evaluations of FI 559/868/1766 2031/2815/4331
Maximum s-value used 16/29/71 6/10/21
Relative error (max-norm) 5:310�1=5:510�1=2:2100 1:310�2=1:110�2=1:110�2
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4.3.3. One-step on-the-fly results

Since the diffusion coefficient d = 0.01, all eigenvalues do have a strictly negative real part, which means
that also the original one-step code described in [11] is applicable. By way of comparison we applied this code
on-the-fly in the same way as the two-step code. Table 6 shows the results. We observe that now the crude
tolerance TOL = 10�2 did not lead to instabilities. In this sense, the one-step version seems more robust
for the current problem. However, although this crude tolerance leads to a rather cheap integration process
(23 or 24 time steps), the relative errors are unacceptably large. Presumably there is error growth due to insta-
bility (the method has a zero imaginary stability interval and hence near the origin eigenvalues can easily jump
over the boundary of the stability region). To obtain a more realistic accuracy, TOL = 10�4 seems more
appropriate. For this tolerance we observe a similar behavior as shown in the two-step Table 5: the number
of steps and the global errors are almost independent of the spatial grid; furthermore, the integration requires
a stiffness-induced increasing number of F-evaluations on the finer meshes. The one-step code is slightly
cheaper in number of steps due to a larger real stability interval, but given the imposed tolerance of 10�4

the temporal accuracy is too low compared to that of the two-step code. We attribute this to the higher (linear)
consistency order, three versus two, and presumably there is again some error growth due to lack of stability
near the imaginary axis.

5. Concluding remarks

We have proposed the simple two-step extension (3.1) of the existing stabilized one-step methods (2.1) and
(2.5). Our aim has been to create a non-zero imaginary stability interval. We have found that this is possible
while also getting third-order consistency for linear problems. Having a non-zero imaginary stability interval
allows a much wider class of problems for stabilized explicit integration. While so far the emphasis has been on
advection–diffusion–reaction systems, with a non-zero imaginary stability interval different mixed PDE sys-
tems can be treated, such as damped wave equations, coupled sound and heat flow problems, Maxwell’s equa-
tions taking into account thermal effects, etc.

Finally we wish to call attention to related work on stabilized explicit integration by Lebedev, Medovikov,
and Abdulle, see [2,1,6,7] for their methods of order two, three and four. These alternative methods are con-
structed in a different way, only RKC is known in a form with analytically given coefficients. A comparison
between Abdulle’s method and RKC is given in [5], Ch.V. IMEX extensions of the alternative methods are not
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known to the authors. A successful RKC based projection method for the incompressible Navier–Stokes
equations is proposed in [20].
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